Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cell ; 185(5): 847-859.e11, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1650711

ABSTRACT

We address whether T cell responses induced by different vaccine platforms (mRNA-1273, BNT162b2, Ad26.COV2.S, and NVX-CoV2373) cross-recognize early SARS-CoV-2 variants. T cell responses to early variants were preserved across vaccine platforms. By contrast, significant overall decreases were observed for memory B cells and neutralizing antibodies. In subjects ∼6 months post-vaccination, 90% (CD4+) and 87% (CD8+) of memory T cell responses were preserved against variants on average by AIM assay, and 84% (CD4+) and 85% (CD8+) preserved against Omicron. Omicron RBD memory B cell recognition was substantially reduced to 42% compared with other variants. T cell epitope repertoire analysis revealed a median of 11 and 10 spike epitopes recognized by CD4+ and CD8+ T cells, with average preservation > 80% for Omicron. Functional preservation of the majority of T cell responses may play an important role as a second-level defense against diverse variants.


Subject(s)
COVID-19 Vaccines/immunology , Memory B Cells/immunology , Memory T Cells/immunology , SARS-CoV-2/immunology , Ad26COVS1/administration & dosage , Ad26COVS1/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Epitopes/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Memory B Cells/metabolism , Memory T Cells/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccination
2.
Nat Commun ; 13(1): 80, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1616982

ABSTRACT

Cross-reactive immune responses to SARS-CoV-2 have been observed in pre-pandemic cohorts and proposed to contribute to host protection. Here we assess 52 COVID-19 household contacts to capture immune responses at the earliest timepoints after SARS-CoV-2 exposure. Using a dual cytokine FLISpot assay on peripheral blood mononuclear cells, we enumerate the frequency of T cells specific for spike, nucleocapsid, membrane, envelope and ORF1 SARS-CoV-2 epitopes that cross-react with human endemic coronaviruses. We observe higher frequencies of cross-reactive (p = 0.0139), and nucleocapsid-specific (p = 0.0355) IL-2-secreting memory T cells in contacts who remained PCR-negative despite exposure (n = 26), when compared with those who convert to PCR-positive (n = 26); no significant difference in the frequency of responses to spike is observed, hinting at a limited protective function of spike-cross-reactive T cells. Our results are thus consistent with pre-existing non-spike cross-reactive memory T cells protecting SARS-CoV-2-naïve contacts from infection, thereby supporting the inclusion of non-spike antigens in second-generation vaccines.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Contact Tracing/methods , Cross Reactions/immunology , Memory T Cells/immunology , SARS-CoV-2/immunology , Adult , COVID-19/epidemiology , COVID-19/virology , Coronavirus/immunology , Coronavirus/physiology , Epitopes, T-Lymphocyte/immunology , Female , Humans , Male , Memory T Cells/metabolism , Memory T Cells/virology , Middle Aged , Pandemics/prevention & control , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/metabolism , Young Adult
3.
Nature ; 602(7895): 148-155, 2022 02.
Article in English | MEDLINE | ID: covidwho-1556858

ABSTRACT

Immunological memory is a hallmark of adaptive immunity and facilitates an accelerated and enhanced immune response upon re-infection with the same pathogen1,2. Since the outbreak of the ongoing COVID-19 pandemic, a key question has focused on which SARS-CoV-2-specific T cells stimulated during acute infection give rise to long-lived memory T cells3. Here, using spectral flow cytometry combined with cellular indexing of transcriptomes and T cell receptor sequencing, we longitudinally characterized individual SARS-CoV-2-specific CD8+ T cells of patients with COVID-19 from acute infection to 1 year into recovery and found a distinct signature identifying long-lived memory CD8+ T cells. SARS-CoV-2-specific memory CD8+ T cells persisting 1 year after acute infection express CD45RA, IL-7 receptor-α and T cell factor 1, but they maintain low expression of CCR7, thus resembling CD45RA+ effector memory T cells. Tracking individual clones of SARS-CoV-2-specific CD8+ T cells, we reveal that an interferon signature marks clones that give rise to long-lived cells, whereas prolonged proliferation and mechanistic target of rapamycin signalling are associated with clonal disappearance from the blood. Collectively, we describe a transcriptional signature that marks long-lived, circulating human memory CD8+ T cells following an acute viral infection.


Subject(s)
Antigens, Viral/immunology , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/immunology , Memory T Cells/immunology , Memory T Cells/metabolism , SARS-CoV-2/immunology , Acute Disease , COVID-19/virology , Cell Proliferation , Clone Cells/cytology , Clone Cells/immunology , Humans , Interferons/immunology , Interleukin-7 Receptor alpha Subunit/metabolism , Leukocyte Common Antigens/metabolism , Longitudinal Studies , Mechanistic Target of Rapamycin Complex 1/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, CCR7/metabolism , T Cell Transcription Factor 1/metabolism , Time Factors , Transcriptome
4.
J Clin Pathol ; 75(2): 104-111, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-975717

ABSTRACT

AIMS: Atypical lymphocytes circulating in blood have been reported in COVID-19 patients. This study aims to (1) analyse if patients with reactive lymphocytes (COVID-19 RL) show clinical or biological characteristics related to outcome; (2) develop an automatic system to recognise them in an objective way and (3) study their immunophenotype. METHODS: Clinical and laboratory findings in 36 COVID-19 patients were compared between those showing COVID-19 RL in blood (18) and those without (18). Blood samples were analysed in Advia2120i and stained with May Grünwald-Giemsa. Digital images were acquired in CellaVisionDM96. Convolutional neural networks (CNNs) were used to accurately recognise COVID-19 RL. Immunophenotypic study was performed throughflow cytometry. RESULTS: Neutrophils, D-dimer, procalcitonin, glomerular filtration rate and total protein values were higher in patients without COVID-19 RL (p<0.05) and four of these patients died. Haemoglobin and lymphocyte counts were higher (p<0.02) and no patients died in the group showing COVID-19 RL. COVID-19 RL showed a distinct deep blue cytoplasm with nucleus mostly in eccentric position. Through two sequential CNNs, they were automatically distinguished from normal lymphocytes and classical RL with sensitivity, specificity and overall accuracy values of 90.5%, 99.4% and 98.7%, respectively. Immunophenotypic analysis revealed COVID-19 RL are mostly activated effector memory CD4 and CD8 T cells. CONCLUSION: We found that COVID-19 RL are related to a better evolution and prognosis. They can be detected by morphology in the smear review, being the computerised approach proposed useful to enhance a more objective recognition. Their presence suggests an abundant production of virus-specific T cells, thus explaining the better outcome of patients showing these cells circulating in blood.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/diagnosis , COVID-19/immunology , Memory T Cells/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , COVID-19/mortality , Case-Control Studies , Clinical Decision Rules , Disease Progression , Female , Flow Cytometry , Humans , Immunophenotyping , Male , Memory T Cells/immunology , Middle Aged , Neural Networks, Computer , Prognosis , Sensitivity and Specificity , Spain/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL